Cut-and-Paste Editing of Multiresolution Surfaces

Henning Biermann, Ioana Martin, Fausto Bernardini, Denis Zorin

NYU Media Research Lab

IBM T. J. Watson Research Center

IEM

Spline pasting Forsey [88], Barghiel [95], Mann [97] Base/detail separation Kobbelt [98], Guskov [99], Lee [00] Surface parameterization

Related Work

 Eck [95], Pedersen [95,96], Floater [97], Guskov [00], Sheffer [00], Desbrun [02], Levy [02]

IBM.

Requirements

- One-to-one for resampling purposes
- Minimize distortion
- Free boundary

selected feature parameterization

 Until recently, nothing available; now several options: Sheffer '00, Desbrun '02, Levy'02

Angle-Based Flattening

(Sheffer & de Sturler'00)

Use angles as variables:

- Set target angles φ_t^v so that at each vertex v angles sum up to 2π (scale angles by $2\pi l \sum_t \alpha_t^v$)
- Optimize $\sum_{t,v} \mathbf{w}_t^{v} (\alpha_t^{v} \phi_t^{v})^2$ subject to constraints

IBM.

Nonlinear Optimization

- The flatter the mesh, the faster it converges
- Use Newton iteration, solve a linear system at each step using Conjugate Residuals

Resampling

On the common parameterization:

- Resample source details at target vertex positions in parametric domain
- Point location + evaluation (bilinear or subdivision)
- Use differentials to transform details

IBM

